42nd Austrian Chemistry Olympiad

National Competition

SOLUTIONS Theoretical Competition

Theoretical Part - Solutions
June 2nd, 2016

Task 1 $\frac{11}{41.5}$

41.5 bp \triangleq 11 rp; f =

Some antibiotics

A. Prontosil

	e compounds B, C, D, E , F and benzene-1,3-
diamine.	
B	C
SO ₂ Cl	SO ₂ NH ₂
2bp	1.5bp
D	E
SO ₂ NH ₂	SO ₂ NH ₂
1.5bp	2bp
F	benzene-1,3-diamine
N = N $N = N$ $N = N$ $N = N$	H_2N NH_2
2bp	0.5bp

1.2. Why is the step $E \rightarrow F$ impossible when benzene is used instead of benzene-1,3-diamine? verbal justification:

diazonium ion is a weak electrophile, benzenediamine is more reactive than benzene, caused by the +M-effect of the amino groups of benzenediamine; **1.5bp**

1.3. What type of stereoisomerism can occur in F ?	
diastereomerism	1bp

$\begin{array}{c} \textbf{42}^{nd} \, \textbf{Austrian Chemistry Olympiad} \\ \textbf{National Competition at the APP in Innsbruck} \\ \textbf{Theoretical Part - Solutions} \\ \textbf{June 2}^{nd}, \textbf{2016} \end{array}$

B. Chloramphenicol

1.4. Draw the constitutional formulae of the formulae of C and E .	compounds A and B and the configurational
A O. H	B NO ₂
	НО
	он
0.5bp	2bp
C	$\mid E \mid$
HO OH	O_2N O_1 O_2 O_3 O_4 O_4 O_5 O_6 O_7 O_8
2bp	2bp

1.5. Draw the structural formulae of the reactive species in the reaction $A \rightarrow B$ and $D \rightarrow E$ and name the respective reaction mechanism of each. $A \rightarrow B$ $D \rightarrow E$ ОН 1.5bp 1.5bp 1bp reaction mechanism: A_N reaction mechanism: SE 1bp

1.6. Name substance C according to IUPAC.	
(2R, 3R) - 2-amino-3-phenylpropane-1,3-diol	1.5bp

42nd Austrian Chemistry Olympiad National Competition at the APP in Innsbruck Theoretical Part - Solutions June 2nd, 2016

C. Trimethoprim

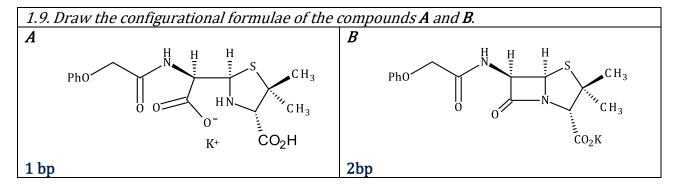
1.7. Draw the constitutional formulae of the compounds B, C, D and E and write down the	
molecular formula of X .	

 \overline{B} A ÇO₂Me COCl ОН НО ÓΗ ÓΗ 1.5bp 1bp С D H_3CO OCH_3 ОН НО OCH₃ ÓΗ 2bp 1.5bp X $\boldsymbol{\mathit{E}}$ СН3ОН 0.5 bp ÓΕt H_3CO OCH_3 OCH₃ 2 bp

1.8. Which effect in protonated guanidine is responsible for this? Draw at least two structural formulae in order to show this.

$$H_2N$$
 NH_2
 H_2N
 NH_2
 NH_2

0.5 bp mesomeric effect structural formulae: 1.5bp


etc.

Theoretical Part - Solutions
June 2nd, 2016

D. Penicillin V

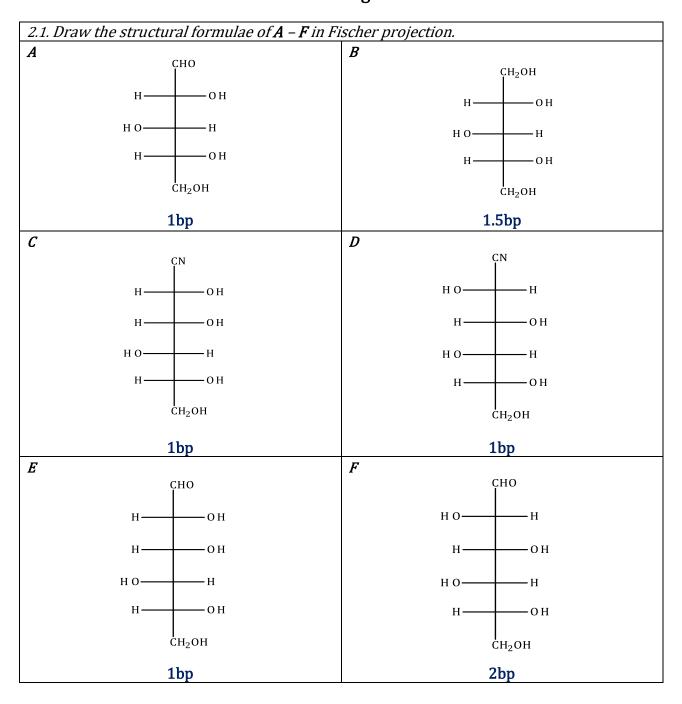
1.10. Write the mechanism of the reaction $A \rightarrow B$ with structural formulae and "arrows" for the attacking species. Draw only the parts of the molecules that are involved in this step. For all other parts write "R" for rest in the usual way.

1.11. Write down the name of the functional group that is formed in reaction A→B.

lactam

0.5bp

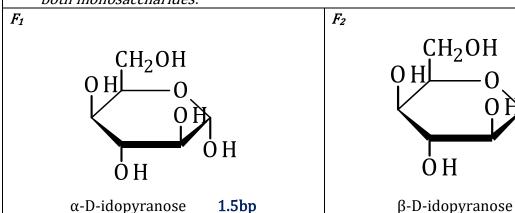
42nd Austrian Chemistry Olympiad National Competition at the APP in Innsbruck Theoretical Part - Solutions


June 2nd, 2016

Task 2

16 bp \triangleq 4 rp; $f = \frac{4}{16}$

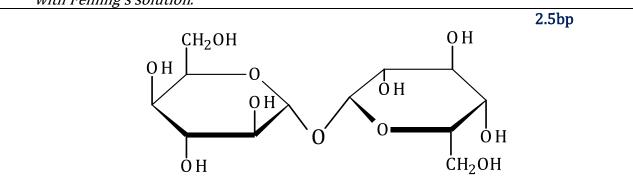
Birch sugar



Theoretical Part - Solutions
June 2nd, 2016

1.5bp

2.2. Draw the two formed pyranose sugars F_1 and F_2 in the Haworth projection and name both monosaccharides.



2.3. Name the special isomeric relationship between F_1 and F_2 .

epimers / anomers

1bp

2.4. Draw the structural formula of the disaccharide in the Haworth projection that is formed through the combination of F_1 and F_2 . This substance shows a negative reaction with Fehling's solution.

2.5. How many stereoisomers exist for **B**?
4 (32)
2bp

Theoretical Part - Solutions
June 2nd, 2016

Task 3

33 bp \triangleq 9 rp; f =

A journey through the world of metals

3.1. Determine which metal the mentioned metal Y is and provide your calculation below.

Supposing 100g:

69.75g 0 n = m/M = 4.359 mol

30.25g Y $1:1 \Rightarrow n = 4.359$ mol

 $M(Y) = 30.25/4.359 = 6.94 \text{ g·mol}^{-1} \Rightarrow \text{Li}$

2bp

3.2. Write down the exact total formula of substance **Z**.

 Li_2O_2

1bp

3.3. Calculate into which cubic lattice the metal Y crystallises.

$$\rho = \frac{m_{EC}}{m_{EC}} = \frac{atoms/EC \cdot M}{m_{EC}}$$

Atoms/EC = $\frac{\rho \cdot N_A \cdot a^3}{M}$

Atoms/EC = 2

⇒ cubic body centred

3bp

3.4. Write down balanced reaction equations for the four discussed processes. 1 bp each

 $BaSO_4 + 2C \rightarrow BaS + 2CO_2$

 $BaS + H_2O + CO_2 \rightarrow BaCO_3 + H_2S$

 $BaCO_3 \rightarrow BaO + CO_2$

 $3 \text{ BaO} + 2\text{Al} \rightarrow 3 \text{ Ba} + \text{Al}_2\text{O}_3$

3.5. Specify the coordination numbers of the metal and oxide ions in the crystal structure.

CN = 6 for both

1bp

3.6. Write down balanced reaction equations for the formation of the three metal oxides from their elements.

0.5 bp each

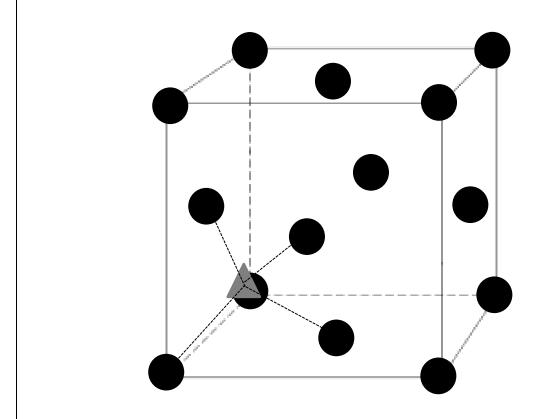
 $Ba + O_2 \rightarrow BaO_2$

 $2 Ba + O_2 \rightarrow 2 BaO$

Theoretical Part - Solutions June 2nd, 2016

 $Ba + 2 O_2 \rightarrow Ba(O_2)_2$

3.7. Write down the balanced reaction equation for the reaction of the ozonide ions with water. Assign oxidation states to all atoms.


1,5bp for ON **4bp** for RE

3.8. Calculate the amount of hydrogen in Mg₂NiH₄ in percent by mass.

 $mass\ content = (4 \cdot 1.01)/(2 \cdot 24.31 + 58.69 + 4 \cdot 1.01) = 0.03628 = 3.628\%$

1bp

3.9. Draw all nickel atoms (without H atoms) as coloured balls, and one magnesium ion, which you can choose freely, as a triangle into the given unit cell. Indicate the tetrahedron for the chosen magnesium ion with dashed lines.

4bp

3.10. How many tetrahedron gaps and how many octahedron gaps are there per unit cell?

tetrahedron gaps: 8 1bp octahedron gaps: 4 1bp

3.11. Write down the amount of formula units of Mg2NiH4 in one unit cell.

Theoretical Part - Solutions
June 2nd, 2016

$$8 \cdot \frac{1}{8} + 6 \cdot \frac{1}{2} = 4$$

1bp

3.12. Calculate the lattice parameter a₀ of the unit cell.

$$n \cdot \lambda = 2d \cdot \sin\theta$$

with
$$n = 1$$
. $\lambda = 1.542$ Å. $\theta = 11.92^{\circ}$

$$d = \frac{1 \cdot 1.542 \cdot 10^{-10}}{2 \cdot \sin{(11.92^{\circ})}} = 3.733 \cdot 10^{-10} m$$

d is the distace between the planes, 3d the leghth of the body diagonal in the cell

$$a \cdot \sqrt{3} = 3d$$

$$a = \frac{3 \cdot 3.733 \cdot 10^{-10}}{\sqrt{3}} m = 6.465 \cdot 10^{-10} m$$

4bp

3.13. Calculate the density of Mg₂NiH₄ powder in g/cm³.

$$\rho = \frac{m_{EZ}}{v_{EZ}} = \frac{atoms/EZ \cdot M}{N_A \cdot \alpha^3}$$

$$\rho = \frac{4 \cdot 111.34 \,\mathrm{g \cdot mol^{-1}}}{6.022 \cdot 10^{23} mol^{-1} \cdot (6.465 \cdot 10^{-8} cm)^3}$$

$$\rho = 2.737 \ g \cdot cm^{-3}$$

3 bp

Task 4

24 bp
$$\triangleq$$
 6 rp; $f = \frac{6}{24}$

Something "Gschmackig's"(= tasty) from Tyrol

A. The "Tiroler Zelten"

4.1. Calculate the exact total formula of substance W.

$$m(C) = 70.56g \rightarrow n(C) = 5.875 \text{ mol}$$

$$m(H) = 5.93g \rightarrow n(H) = 5.871 \text{ mol}$$

$$m(0) = 23.51g \rightarrow n(0) = 1.469 \text{ mol}$$

 \rightarrow empirical formula: C₄H₄O

 $MS \rightarrow total formula: C_8H_8O_2$

2bp

4.2. Draw the exact structural formula of substance W.

2bp

4.3. Calculate the exact total formula of substance X.

$$m(C) = 2.4020g \rightarrow 81.03\% C \rightarrow n(C) = 6.7468 \text{ mol}$$

$$m(H) = 0.2424g \rightarrow 8.17\% H \rightarrow n(H) = 8.0891 \text{ mol}$$

Theoretical Part - Solutions
June 2nd, 2016

$$m(0) = 0.3200g \rightarrow 10.80\% \ 0 \rightarrow n(0) = 0.6750 \ \text{mol}$$

 $\rightarrow \text{total formula: } C_{10}H_{12}O$ 3bp

4.4. Draw the structural formula of substance **X** and mark which H atom is responsible for the signal at 6.06 ppm with an arrow.

4.5. Write down the IUPAC name of substance X without stereo descriptors.

1-methoxy-4-(prop-1-enyl)-benzene

2bp

4.6. Denote the both configurations of **X** by drawing their structural formulae in the boxes provided below and indicate eventual stereo descriptors.

4.7. Draw the structural formula of estragole and mark which H atom(s) are responsible for the signal at 3.21 ppm.

Theoretical Part - Solutions
June 2nd, 2016

B. A mug of mulled wine

4.8. Mark all chiral centres with an asterisk (*) in the corilagin molecule depicted below and precisely indicate their absolute configuration by labelling the atoms with their stereo descriptors.

4.9. Provide a drawing of the heterocyclic compound of corilagin in the Haworth projection. Simplify the structure as depicted below.

picture: corilagin

42nd Austrian Chemistry Olympiad National Competition at the APP in Innsbruck Theoretical Part - Solutions June 2nd, 2016

Theoretical Part - Solutions
June 2nd, 2016

Task 5

35 bp \triangleq 10 rp; f =

Little A to G of Nickel Complexes

E 1 Ha	maun dan sama nam	og of gomplovog and	airran Ifrran find	gama of the areas	magified			
ab	reunder some name ove, fill in the corre this part of the tas	sponding letter. (N	ote: Whereas there	e will be no negativ	ve marks			
	nminenickel(III)	_	hexaaquanickel(I	-				
	hexaethylendiaminonickel(II) hexanitratonickel(II)							
	inetetraaquanickel(` '		diaminonickel(II)	E			
	rbonylnickel(II)	•	tetracarbonylnich	<i>kel(0)</i> G				
	every correct assignm		•	` '				
	Ţ Ţ	•		•				
5.2. Wi	rite down the compl	lete electron config	uration of the cent	tral atom in these o	complexes.			
]	Ni ²⁺ : 1s ² 2s ² 2p ⁶ 3s ² 3p	o ⁶ 3d ⁸			1bp			
	aw a diagram show cide which magneti			Vi in the octahedra	al complex.			
DC	ciuc winch magneti	e properties you ex	φειι					
		e_g	_					
		e_g $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	#		2bp			
	X paramagne	tic	0 diama	agnetic	0.5bp			
	l in the missing va rresponding comple		the first row write	e the letter (A, B,	C) for the			
	complex	С	A	В				
	$\Delta_{o}/\mathrm{cm}^{-1}$	8500	10800	13000				
	Δ_O/eV	1.05	1.34	1.61	-			
	$\Delta_0/\mathrm{kJ}~\mathrm{mol}^{-1}$	101.68	129.20	155.51	-			
		complexes first row		•	_			
	ussignment of	comprehens mor row	1.5 bp, energy varac	es 15p cuen				
5.5. Ca.	lculate the ligand fie	eld stabilization end	ergy for the compl	$\Delta_0 = 10800$	cm ⁻¹ in eV.			
	6 0 4 4 2 0 6 4			- 0 2000	01			

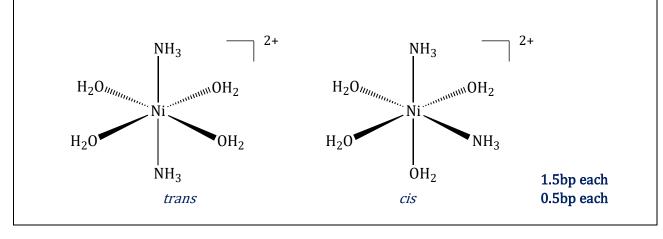
 $LFSE = 6 \cdot 0.4 \, \Delta_0 - 2 \cdot 0.6 \, \Delta_0 = 1.2 \, \Delta_0 = 1.2 \cdot 1.34 = 1.61 \, \text{eV}$

2bp

- 5.6. In this calculation you did not have to consider the pairing energy P because ... (tick right answer/s)
- 0 ... it is only an approximation, P is negligible.
- 0 ... you only have to consider P in orbitals that lie higher in energy as the others.
- X ... the Ni central atom in the spherical ligand field has the same number of paired spins.
- 0 Not true at all. One has to consider P and I did that.

0.5bp

Theoretical Part - Solutions June 2nd, 2016

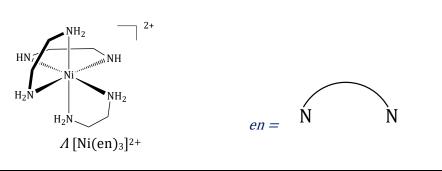


5.7. Tick the right answers a) which complex is thermodynamically more stable. b) the name of the effect causing this stability.						
a)	$0 \ complex \mathbf{D} \ [Ni(NH_3)_2(OH_2)_4]^{2+}$	$X complex \mathbf{E} [Ni(en)(OH_2)_4]^{2+}$	0.5bp			
<i>b)</i>	<i>0 inert-pair-effect 0 resonance</i>	X <i>chelate effect</i> 0 <i>trans effect</i>	0.5bp			

5.8. Calculate the reaction entropies $\Delta_R S^{\circ}$ for (1) and (2).	
for reaction (1)	
$\Delta_R G^{\circ} = -RT \ln K_c = -8.314 \cdot 298 \cdot 11.6 = -28740 \text{ J}$	0.5bp
4 100 4 60 00 00 00 00 00	
$\Delta_R S^\circ = \frac{\Delta_R H^\circ - \Delta_R G^\circ}{T} = \frac{-33500 + 28740}{298} = -15.97 \text{ J K}^{-1}$	1.5bp
for reaction (2)	
$\Delta_R G^\circ = -RT \ln K_c = -8.314 \cdot 298 \cdot 17.78 = -44051 \text{ J}$	0.5bp
$A_{\rm D}H^{\circ} - A_{\rm D}G^{\circ} = -37200 + 44051$	
$\Delta_R S^\circ = \frac{\Delta_R H^\circ - \Delta_R G^\circ}{T} = \frac{-37200 + 44051}{298} = 22.99 \text{ J K}^{-1}$	1.5bp
T 298 Z_2 .73 f f	1.55р

5.9. For reaction (3) calculate $\Delta_R H^{\circ}$, $\Delta_R S^{\circ}$ and $\Delta_R G^{\circ}$.	
reactions: $(3) = (2) - (1)$	1.5bp
$\Delta_R H^{\circ}_{(3)} = \Delta_R H^{\circ}_{(2)} - \Delta_R H^{\circ}_{(1)} = -37.2 + 33.5 = -3.7 \text{ kJ}$	1bp
$\Delta_R G^{\circ}_{(3)} = \Delta_R G^{\circ}_{(2)} - \Delta_R G^{\circ}_{(1)} = -44.05 + 28.74 = -15.31 \text{ kJ}$	1bp
$\Delta_R S^{\circ}_{(3)} = \Delta_R S^{\circ}_{(2)} - \Delta_R S^{\circ}_{(1)} = 22.99 + 15.97 = 38.96 \text{ JK}^{-1}$	1bp

5.10. Complex **D** $[Ni(NH_3)_2(OH_2)_4]^{2+}$ has two stereo isomers. Draw them using the octahedral skeletons. Assign the appropriate stereodescriptors.



Theoretical Part - Solutions
June 2nd, 2016

5.11. Draw the Λ -isomer of complex \mathbf{F} [Ni(en)₃]²⁺ using the skeleton. Draw en in the way shown below.

5.12. In the VB-scheme for complex G ...

- a) draw the electrons (electron pairs) of the Ni central atom with ↑ and ↑↓ respectively
 1.5bp
- b) mark the orbitals occupied by electron pairs from the ligands with an X. 0.5bp

3d			4s 4p			4d							
$\uparrow\downarrow$	↑↓	↑↓	1↓	1↓	X	X	X	X					

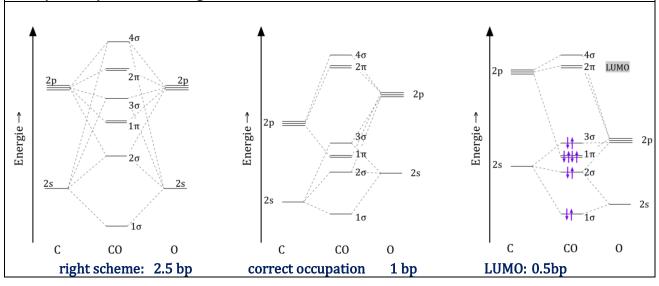
5.13. Denote the hybridization of the Ni central atom in complex **G** and choose the geometrical shape resulting of this hybridization.

hybrid: ____ sp³_____

shape:

0 octahedral

X tetrahedral


0 square planar

0 trigonal prismatic

1bp

3bp

5.14. One of the following MO-schemes shows the energies for the molecular orbitals of CO in correct sequence. Choose the right scheme by correctly "occupying" it with electrons (arrows) and indicating the LUMO.

Theoretical Part - Solutions
June 2nd, 2016

Task 6

18 bp \triangleq 5 rp; f =

Bombastic Calorimetry

6.1. Give a balanced equation for the combustion including the symbols for the states of	
matter.	

 $C_8H_{8(l)} + 10 O_{2(g)} \rightarrow 8 CO_{2(g)} + 4 H_2O_{(l)}$

1bp

6.2. Calculate the molar standard enthalpies of combustion $\Delta_c H^o$ of A and B.

for compound A

$$M(C_8H_8) = 104.16 \text{ g mol}^{-1} \quad 0.7834\text{g} \triangleq 0.007521 \text{ mol}$$

$$\Delta U = Q - Q_{wire} = -34181 - (-30) = 34151 \text{ J}$$

0.5bp

$$\Delta U^{\circ} = \frac{-34.151 \text{ kJ}}{0.007521 \text{ mol}} = -4541 \text{ kJ mol}^{-1}$$

1bp

$$\Delta_c H^\circ = \Delta_c U^\circ + p\Delta V = \Delta_c U^\circ + \Delta nRT = -4541 + \frac{-2 \cdot 8.314 \cdot 298}{1000} = -4546 \text{ kJ mol}^{-1}$$

2bp

for compound B

$$0.6548g \triangleq 0.006286 \text{ mol}$$

$$\Delta U = Q - Q_{wire} = -27623 + 30 = 27593 \text{ J}$$

0.5bp

$$\Delta U^{\circ} = \frac{-27.593 \text{ kJ}}{0.006286 \text{ mol}} = -4390 \text{ kJ mol}^{-1}$$

1bp

$$\Delta_{\rm c} H^{\circ} = \Delta_{\rm c} U^{\circ} + p \Delta V = \Delta_{\rm c} U^{\circ} + \Delta nRT = -4390 + \frac{-2 \cdot 8.314 \cdot 298}{1000} = -4395 \text{ kJ mol}^{-1}$$

2bp

6.3. Calculate the molar standard enthalpies of formation $\Delta_f H^o$ of A and B. In case you did not get a result in 6.2. use $\Delta_c H^o_A = -4581$ kJ mol⁻¹ and $\Delta_c H^o_B = -4431$ kJ mol⁻¹.

für Verbindung A

$$\begin{split} & \Delta_{\rm c} H^{\circ}({\rm A}) = 8 \cdot \Delta_{\rm f} H^{\circ}({\rm CO}_2) + \ 4 \cdot \Delta_{\rm f} H^{\circ}\big({\rm H}_2{\rm O}_{({\rm I})}\big) - \ \Delta_{\rm f} H^{\circ}({\rm A}) \\ & \Delta_{\rm f} H^{\circ}({\rm A}) = 8 \cdot \Delta_{\rm f} H^{\circ}({\rm CO}_2) + \ 4 \cdot \Delta_{\rm f} H^{\circ}\big({\rm H}_2{\rm O}_{({\rm I})}\big) - \ \Delta_{\rm c} H^{\circ}({\rm A}) = \\ & = 8 \cdot (-393.5) - \ 4 \cdot (285.8) + \ 4546 = 254.8 \ {\rm kJ \ mol^{-1}} \quad (289.8 \ {\rm kJ \ mol^{-1}}) \quad \textbf{1.5bp} \end{split}$$

für Verbindung B

$$\Delta_{\rm f} H^{\circ}(B) = 8 \cdot \Delta_{\rm f} H^{\circ}(CO_2) + 4 \cdot \Delta_{\rm f} H^{\circ}(H_2O_{(1)}) - \Delta_{\rm c} H^{\circ}(B) =
= 8 \cdot (-393.5) - 4 \cdot (285.8) + 4546 = 103.8 \,\mathrm{kJ \, mol^{-1}} \, (139.8 \,\mathrm{kJ \, mol^{-1}})$$
1.5bp

6.4. According to the standard enthalpies of formation, one of the substances should be more stable with regard to dissociation in the elements than the other. This is... (tick the right circle!).

0 compound A

X compound B

1bp

6.5. According to Hückel's rule one compound is aromatic. Into the brackets write the number of π -Elektrons of the ring systems and mark the aromatic compound.

0 Cyclooctatetraene (8)

X styrene (6)

1.5bp

6.6. Assign which compound was which sample by correctly filling in A or B respectively.

Theoretical Part - Solutions
June 2nd, 2016

A was cyclooctatetraene

B was styrene

0.5bp

6.7. For styrene calculate the standard enthalpy of combustion according to the incremental system.

$$\begin{split} \Delta_{c}H^{o} &= 8\cdot\Delta_{c}H_{I}\text{ (C-H)} + 4\cdot\Delta_{c}H_{I}\text{ (C-C)} + 3\cdot\Delta_{c}H_{I}\text{ (C=C}_{2C)} + \Delta_{c}H_{I}\text{ (C=C}_{3C)} + \Delta_{c}H_{I}\text{ (Ring)} + \Delta_{vap}H^{o} = \\ &= 8\cdot(-226.1) - 4\cdot(206.4) - 3\cdot(491.5) - 484.4 - 4.2 + 43.5 = \\ &= -4554\text{ kJ} \end{split}$$

3bp

6.8. For both hydrocarbons calculate the stabilization energy through a comparison between the calculated and the measured enthalpies of combustion.

for cyclooctatetraene

$$\Delta E = \Delta_c H^{\circ}_{theor} - \Delta_c H^{\circ} = -4561.5 + 4546 = -15.5 \text{ kJ}$$

0.5bp

(opposite sign accepted likewise)

for styrene

$$\Delta E = \Delta_c H^{\circ}_{theor} - \Delta_c H^{\circ} = -4554 + 4395 = -159 \, kJ$$

(-123kJ)

(19.5 kJ)

0.5bp

(opposite sign accepted likewise)

Task 7

26 bp \triangleq 7 rp; $f = \frac{7}{26}$

A kinetic mixture

A. Nitrogen oxides

7.1. Put a cross into the box where the factor of the change in rate matches the concentration change.									
Clause Caramatantia	The rate changes with the factor								
Change of concentration	1	2	4	8	16	$\frac{1}{2}$	$\frac{1}{4}$	1 8	$\frac{1}{16}$
[O ₂] quadrupled, [NO] unchanged			×						
[O ₂] unchanged, [NO] quadrupled					×				
[O ₂] unchanged, [NO] halved							×		
[O ₂] halved, [NO] quadrupled				×					
[O ₂] quadrupled, [NO] halved	×								

Lines 1 -3: 0.5 bp each; Lines 4 and 5: 1 bp each

7.2. Calculate the activation energy of the reaction.

All initial concentrations ar halved $\Rightarrow \frac{1}{8}$ of the former rate $\Rightarrow k(T_2):k(T_1) = 8:1$

Theoretical Part - Solutions
June 2nd, 2016

1bp

$$ln\frac{k(T_2)}{k(T_1)} = \frac{E_A}{R} \cdot \left(\frac{1}{T_1} - \frac{1}{T_2}\right) \Rightarrow R \cdot ln8 \cdot \left(\frac{1}{733} - \frac{1}{873}\right) = E_A \Rightarrow E_A = 79.0 \text{ kJ}$$

B. The iodation of acetone

7.3. Calculate the amount of acetone in 1.00 L (= "concentration of Ac").

 $M(Ac) = 58.09 \text{ g·mol}^{-1}$; 1 L has 790 g $\Rightarrow c(Ac) = 13.6 \text{ mol} \cdot \text{L}^{-1}$

1.5bp

7.4. Fill the missing values into the table, calculate the individual initial concentrations and the reaction rates of the four experiments.

the reaction	the reaction rates of the four experiments.					
Try	$c (\mathrm{H}_3\mathrm{O}^+) \mathrm{mol}\cdot\mathrm{L}^{-1}$	c (I ₂) mol·L ⁻¹	c (acetone) mol·L ⁻¹	v in mol·L-1.s-1		
1	0.784	1.515·10 ⁻³	1.36	3.86·10 ⁻⁵		
2	0.392	1.515·10 ⁻³	1.36	1.89·10 ⁻⁵		
3	0.784	1.010·10-3	1.36	3.89·10 ⁻⁵		
4	0.784	1.515·10 ⁻³	1.02	2.86·10-5		

For each (different concentration): 0.25bp; for each v: 0.5bp

7.5. Write down an equation for the differential reaction rate of the iodation of acetone using the right integer reaction orders.

$$v = \mathbf{k} \cdot [\mathbf{A}\mathbf{c}] \cdot [\mathbf{H}_3 \mathbf{0}^+]$$

2bp

7.6. Calculate a mean value of the rate constant with the right units.

$$k = 3.38 \cdot 10^{-5} \text{ L·mol}^{-1} \cdot \text{s}^{-1}$$

$$k = 3.55 \cdot 10^{-5} \text{ L} \cdot \text{mol}^{-1} \cdot \text{s}^{-1}$$

$$k = 3.64 \cdot 10^{-5} \text{ L·mol}^{-1} \cdot \text{s}^{-1}$$

 $k = 3.57 \cdot 10^{-5} \text{ L·mol}^{-1} \cdot \text{s}^{-1}$

$$\Rightarrow k = 3.54 \cdot 10^{-5} \text{ L·mol-1·s-1}$$

2bp

7.7. Put a cross (crosses) left of the reaction equation which corresponds to a possible RDS which matches the differential rate law.

2bp

WIIICII IIIALCII	es the unierential rate law.
X	+ H ₃ O ⁺ + H ₂ O
	HO ⁺ + 2 −
X	HO ⁺ + H ₂ O → HO + H ₃ O ⁺

Theoretical Part - Solutions
June 2nd, 2016

C. The Rice-Herzfeld-Mechanism

7.8. Write down a balanced equation for the pyrolysis reaction.	
$CH_3CHO \rightarrow CH_4 + CO$	0.5bp

7.9. Write the formulae for the unstable particles of the propagation reactions into the two					
boxes.					
•CH ₃	1bp	CH ₃ CO•	1bp		

7.10. Give a proof for the differential rate law given above, assuming a steady state mechanism for the unstable particles of the propagation reactions.

$$\frac{\frac{d[\mathit{CH}_4]}{dt}}{\frac{dt}{dt}} = k_b \cdot [\mathit{CH}_3\mathit{CHO}] \cdot [\bullet \mathit{CH}_3]$$
 1bp
$$\frac{\frac{d[\bullet \mathit{CH}_3]}{dt}}{\frac{dt}{dt}} = 0 = k_a \cdot [\mathit{CH}_3\mathit{CHO}] - k_b \cdot [\mathit{CH}_3\mathit{CHO}] \cdot [\bullet \mathit{CH}_3] + k_c \cdot [\mathit{CH}_3\mathit{CO}\bullet] - k_d \cdot [\bullet \mathit{CH}_3]^2 \text{ 1bp}$$

$$\frac{d[\mathit{CH}_3\mathit{CO}\bullet]}{dt} = 0 = k_b \cdot [\mathit{CH}_3\mathit{CHO}] \cdot [\bullet \mathit{CH}_3] - k_c \cdot [\mathit{CH}_3\mathit{CO}\bullet]$$
 1bp

Adding the last two equations: $0 = k_a \cdot [CH_3CHO] - k_d \cdot [\bullet CH_3]^2$ 1.5bp

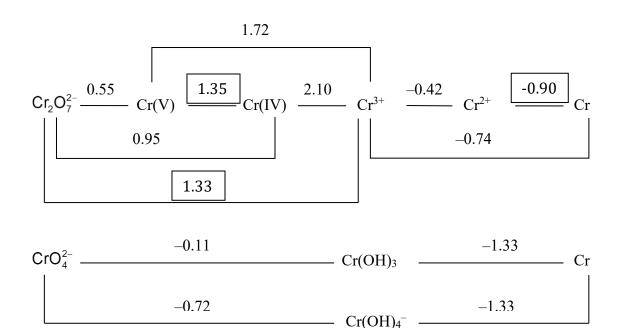
 $[\bullet CH_3] = \left(\frac{k_a}{k_d} \cdot [CH_3CHO]\right)^{\frac{1}{2}}$ using the first equation leads to:

$$\frac{d[CH_4]}{dt} = k_b \cdot [CH_3CHO] \cdot \left(\frac{k_a}{k_d} \cdot [CH_3CHO]\right)^{\frac{1}{2}} = k_b \cdot \left(\frac{k_a}{k_d}\right)^{\frac{1}{2}} \cdot [CH_3CHO]^{\frac{3}{2}} \quad \text{q.e.d.}$$
 1bp

7.11. Write down a relation between k_{EXP} and the rate constants of the elemental steps.

$$k_{EXP} = k_b \cdot \left(\frac{k_a}{k_A}\right)^{\frac{1}{2}}$$
 1bp

Theoretical Part - Solutions
June 2nd, 2016



Task 8 $\frac{8}{31}$

 $31 \text{ bp} \triangleq 8 \text{ rp}; f =$

Another journey: electro chemistry and equilibrium

A. Another metal: Chromium

8.1. Calculate the three missing E^0 -values and write the respective results on the corresponding lines.

$$E^{O}(\{Cr(V)|Cr(IV)\} = \frac{2 \cdot 0.95 - 0.55}{1} = 1.35 \text{ V}$$

$$E^{O}(\{Cr(II)|Cr(0)\} = \frac{-3 \cdot 0.74 - (-0.42)}{2} = -0.90 \text{ V}$$

$$E^{O}(\{Cr(VI)|Cr(III)\} = \frac{2 \cdot 0.95 + 2.10}{3} = 1.33 \text{ V}$$
3bp

8.2. Are Cr(V) and Cr(IV) stable against disproportionation? Give reasoning for your answers using inequalities.

Cr(V) not stable, because $E^{O}(\{Cr(V)|Cr(IV)\}) > E^{O}(\{Cr(VI)|Cr(V)\})$

Cr(IV) not stable, because $E^{O}(\{Cr(IV)|Cr(III)\} > E^{O}(\{Cr(V)|Cr(IV)\})$

2bp

Theoretical Part - Solutions
June 2nd, 2016

8.3. Calculate the equilibrium constant for the disproportionation of Cr(II) at 25°C.

$$3 \operatorname{Cr}^{2+} \rightleftarrows 2 \operatorname{Cr}^{3+} + \operatorname{Cr}^{0}$$
1bp

$$\Delta E^{O} = -0.90 - (-0.42) = -0.48 \text{ V}$$
 1bp

$$\Delta G^{0} = -z \cdot F \cdot \Delta E^{0} = -R \cdot T \cdot lnK \quad \Rightarrow \quad lnK = -\frac{2.96485 \cdot 0.48}{8.314 \cdot 298} = -37.385$$

$$K = 5.8 \cdot 10^{-17}$$
 2bp

8.4. Calculate the solubility product of Cr(OH)3 at 25°C.

$$Cr(OH)_3 \rightleftarrows Cr^{3+} + 3 OH$$
 $K_L = [Cr^{3+}] \cdot [OH^-]^3$ 1bp bei $pH = 14$ ist $[OH^-] = 1 \implies K_L = [Cr^{3+}]$ 1bp

$$E = E^O + \frac{0.059}{z} \cdot log K_L$$

$$-1.33 = -0.74 + \frac{0.059}{3} \cdot log K_L \implies log K_L = -30 \implies K_L = 1.0 \cdot 10^{-30}$$
 2bp

8.5. Calculate the solubility of $Cr(OH)_3$ at 25°C. If you didn't get a result in 8.4., you may use $1.0\cdot 10^{-28}$ (this is not the correct value!).

$$K_L = [Cr^{3+}] \cdot [OH^-]^3$$
 with x mol·L-1 Cr³⁺ we have 3x mol·L-1 OH-

$$K_L = 27x^4$$
 \Rightarrow $x = \sqrt[4]{\frac{1.0 \cdot 10^{30}}{27}} = 1.4 \cdot 10^{-8}$

$$R_L = 27x$$
 $\Rightarrow x = \sqrt{27} = 1.1 \text{ 10}$
 $S = 1.4 \cdot 10^{-8} \text{ mol} \cdot \text{L}^{-1}$ 2bp

B. The "Voltameter"

8.6. Which products deposit at the platinum-cathode and at the platinum-anode? Give your reasoning comparing all possible decomposition voltages.

 H_2 (at the cathode) and O_2 (at the anode) will be produced, because this pair has the smallest decomposition voltage possible

$$H_2/O_2$$
: $|U_Z| = 1.77 - (-0.58) = 2.35V$

$$H_2/SO_4^{2-}$$
: $|U_Z| = 2.01 - (-0.58) = 2.59V$

$$K/O_2$$
: $|U_Z| = 1.77 - (-2.92) = 4.69V$

K/SO₄²:
$$|U_Z| = 2.01 - (-2.92) = 4.93V$$
 3bp

8.7 Write down a balanced equation for the overall electrolysis reaction.

$$2 H_2O \rightarrow 2 H_2 + O_2$$
 0.5bp

Theoretical Part - Solutions
June 2nd, 2016

8.8. Calculate the amount of the deposited products, and from there the total volume of the gas in the left tube of the picture.

$$n(X) = \frac{l.t.\eta}{z \cdot F}$$

$$n(H_2) = \frac{0.805 \cdot 7 \cdot 60}{2 \cdot 96485} = 1.752 \cdot 10^{-3} \text{ mol}$$

$$n(O_2) = 0.5 \cdot (H_2) = 8.76 \cdot 10^{-4} \text{ mol}$$

$$V = \frac{n \cdot R \cdot T}{p} = \frac{2.628 \cdot 10^{-3} \cdot 8.314 \cdot 293}{99800} = 6.40 \cdot 10^{-5} \text{ m}^3$$

$$V = 64.0 \text{ mL}$$
1bp

C. An acid constant and its consequences

8.9. Calculate the molar concentration of the saturated solution of benzoic acid using the unit mol·cm⁻³.

$$M(BA) = 122.1 \text{ g·mol}^{-1}$$

 $c = \frac{2.90}{122.1} = 2.375 \cdot 10^{-2} \text{ mol} \cdot \text{L}^{-1} = 2.38 \cdot 10^{-5} \text{ mol} \cdot \text{cm}^{-3}$ 1bp

8.10. Calculate the protolysis degree of benzoic acid and the protolysis constant of the acid.

$$\Lambda_{0}(BA) = \lambda_{0}(H^{+}) + \lambda_{0}(Benzoat) = 350 + 32.4 = 382.4 \text{ S} \cdot \text{cm}^{2} \cdot \text{mol}^{-1}$$

$$\Lambda_{C}(BA) = \frac{\kappa}{c} = \frac{0.453 \cdot 10^{-3}}{2.38 \cdot 10^{-5}} = 19.11 \text{ S} \cdot \text{cm}^{2} \cdot \text{mol}^{-1}$$

$$\alpha = \frac{\Lambda_{C}(BA)}{\Lambda_{0}(BA)} = \frac{19.11}{382.4} = 5.00 \cdot 10^{-2}$$

$$1bp$$

$$K_{A} = \left(\frac{\alpha^{2}}{(1-\alpha)}\right) \cdot c_{0} = \frac{0.0025}{0.95} \cdot 2.375 \cdot 10^{-2} = 6.25 \cdot 10^{-5}$$

$$1bp$$

8.11. Calculate the volume of NaOH, which was titrated by the student, if the result of 8.9. is right.

$$n(BS) = n(NaOH)$$

 $10 \cdot 2.375 \cdot 10^{-2} = x \cdot 0.01 \implies x = 23.75 \text{ mL}$ 1bp

8.12. Calculate the pH of the solution at the end point of the titration.

There is only Na-benzoate present:
$$c_0 = \frac{10 \cdot 2.375 \cdot 10^{-2}}{10 + 23.75} = 7.04 \cdot 10^{-3} \text{ mol} \cdot \text{L}^{-1}$$
 1bp $K_B(Benzoat) = \frac{1.0 \cdot 10^{-14}}{6.25 \cdot 10^{-5}} = 1.6 \cdot 10^{-10}$ **1bp** $K_B = \frac{[OH^-]^2}{c_0 - [OH^-]} \cong \frac{[OH^-]^2}{c_0} \Rightarrow pH = 14 - 0.5 \cdot (pK_B - logc_0) = 14 - 0.5 \cdot (9.80 + 2.15) = 8.02$ **2bp**