59 th International Mendeleev Olympiad, 2025		
Experimental Exam	Problems	p. 1

Instructions. General Provisions

- **Safety rules:** Follow the generally accepted procedures for conducting a chemical experiment; at all times you must wear a laboratory coat and safety or corrective goggles; eating and drinking in the laboratory are prohibited.
- **Violation of safety rules:** You will receive only one warning; in the event of a repeated violation you will be disqualified.
- **Time:** The total duration of the experimental tour is 5 h. A countdown timer is displayed on the screen. When the command **STOP** is given, you must immediately terminate working and submit all answer sheets.
- **Pre-experiment planning:** You have 10 minutes before the start of the experiment to read through the tasks and plan your work. During this time you may only read the tasks; writing or beginning practical work is prohibited.
- **Timed steps:** If you need to carry out any step for a specified duration, also use the on-screen timer or your own watch.
- Allowed materials: Use only a calculator and a pen.
- **Assistance:** Consult the lab assistants if you have any questions about safety procedures or need to use the restroom.
- Liquid waste: Carefully dispose of liquid waste into the large "Liquid waste" beaker provided on your bench.
- **Answer recording:** Record answers only on the designated answer sheets; answers written elsewhere will not be graded. Show all calculations where required.
- **Reuse of glassware:** You may reuse certain glassware during the tour. Wash it thoroughly after each use.
- **Pipetting:** Draw solutions into pipettes only by using the three-way bulb. It is forbidden to use your mouth to aspirate liquid into pipettes.

Valves of the three-way bulb:

Valve A (Air) – to release air Valve S (Suction) – to suck in liquid Valve E (Expel) – to dispense liquid

- **Reagent limits:** The amount of each reagent provided is limited. Any spilled or entirely consumed reagent will be replaced subject to a penalty.
- Work with burettes:
 - a) Burettes are supplied with open stopcocks. Close the stopcock before use.
- b) If an air bubble remains in the burette tip when filling, gently tap the burette in a vertical position. If this does not resolve the issue, consult your lab assistant.
 - c) Burette stopcocks may leak. Place a 50 mL beaker under the burette to catch any drips.
- Scratch paper: You may use the back side of the task sheets for rough work.
- Workspace: Keep your working area tidy.
- **Breakages:** If you break any equipment, notify the lab assistants, who will help you collect all fragments and provide replacements.

59 th International Mendeleev Olympiad, 2025		
Experimental Exam	Problems	p. 2

Equipment

Equipment	Quantity	
Per two participants		
Hot plate	1	
600 mL beaker	1	
Test tube holder	1	
Marker	1	
Graduated cylinder (5 or 10 mL)	1	
1000 mL beaker	1	
Per	participant	
Burette stand with clamp	1	
Burette	1	
Small funnel	1	
Beaker (50 or 100 mL)	3	
Graduated cylinder (25 or 50 mL)	1	
Graduated pipette (5 mL or 10 mL)	2	
Erlenmeyer flask (250 mL)	2	
Watch glass	1	
Pasteur pipette	11	
Glass test tube	12	
Beaker (50 or 100 mL)	1	
Three-way pipette bulb	1	
Test tube rack	1	
Glass stirring rod	1	
Beaker (250 mL)	1	

59 th International Mendeleev Olympiad, 2025		
Experimental Exam	Problems	p. 3

Versatile Hydrolysis: A Kaleidoscope of Chemical Transformations

Hydrolysis is an important chemical process widely used in science and technology. For centuries, hydrolysis reactions have been employed in various fields – from the production of foodstuffs to the development of pharmaceuticals. All tasks of the Experimental Exam are related to this process; you will therefore explore different applications of hydrolysis and perform experiments involving both qualitative and quantitative analyses.

The most popular method for obtaining glucose is the hydrolysis of starch. The enzymes used in this process perform distinct functions: thermostable α -amylase fragments the starch, and glucoamylase converts the resulting short fragments into glucose. In the first task, you must carry out enzymatic hydrolysis of starch and prove the formation of a reducing sugar. Then, using the molybdenum-blue reaction in the presence of reducing sugars, you will quantitatively determine the concentration of the glucose solution.

Titrimetry is one of the most widespread methods for the quantitative determination of substances in solution. In the second task, you will determine the glucose content via cerimetric titration. However, direct titration is not applicable to all compounds. For example, in quality control of pharmaceuticals such as paracetamol, its hydrolysis is performed first. In the third task, you are asked to determine the amount of paracetamol in the provided tablet.

A similar approach is characteristic of analyses of other organic compounds (including drugs): hydrolysis is used to remove specific functional groups, enabling effective qualitative reactions on the target substances, as you will do in the fourth task.

Each task has strict time constraints, so plan and design your experiment carefully.

59 th International Mendeleev Olympiad, 2025		
Experimental Exam	Problems	p. 4

Task 1. Hydrolysis of Starch and Colorimetric Determination of Glucose Concentration (16 points)

Reagent	Volume/Mass	Container	Label
For each participant			
Glucoamylase	100 μL	Eppendorf tube	Glucoamylase
Thermostable α-amylase	100 μL	Eppendorf tube	α-amylase thermostable
Starch	0.1–0.2 g	Test tube	Starch
Iodine (solution)	1 mL	Eppendorf tube	Iodine
Glucose (solution)	12 mL	Glass vial with stopper	Task # 1 Glucose #XXX
	Com	imon reagents	
Acetate buffer 0.1 M, pH 4.8		50 or 100 mL beaker	Acetate buffer pH 4.8
(NH ₄) ₆ Mo ₇ O ₂₄ 7.5%		50 or 100 mL beaker	(NH ₄) ₆ Mo ₇ O ₂₄ 7.5%
KH ₂ PO ₄ 0.2 M		50 or 100 mL beaker	KH ₂ PO ₄ 0.2 M

Equipment	Quantity	
Per participant		
25 mL volumetric flask	1	
On	the common bench	
50 or 100 mL beaker (Acetate buffer pH 4.8/(NH ₄) ₆ Mo ₇ O ₂₄ 7.5%/ KH ₂ PO ₄ 0.2 M)	6	
Graduated pipettes of various volumes for common solutions	6	
Thermometer	1	
Hot plate	1	
600 mL beaker	1	
Test tube holder	1	
Heat-protective gloves	Choose your size	

In this task, strict adherence to all time intervals and temperatures is required. Failure to comply with the experimental conditions will result in an incorrect outcome!

Procedure

Take the glass test tube containing the starch sample (Starch), remove the cap, add 12 mL of distilled water, and shake the suspension. Using a plastic pipette, transfer one drop of the suspension onto a watch glass and add one drop of iodine solution.

59 th International Mendeleev Olympiad, 2025		
Experimental Exam	Problems	p. 5

1-1. Indicate the result of the iodine test No. 1 on the Answer Sheet by circling Y if positive or N if negative (1 point).

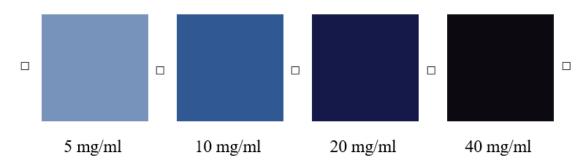
Transfer quantitatively the entire provided volume of **thermostable** α -amylase to the test tube with the starch suspension and secure the tube in the holder. Place the tube into the boiling water bath for 15 min, mixing gently with a glass rod every 5 min. Fill the 250 mL beaker with cold tap water. After 15 min, remove the test tube (**using heat protective gloves – do not touch the hot plate!**), cool it in the cold-water bath to room temperature, then transfer its contents quantitatively into a 25 mL volumetric flask. Bring to the mark with distilled water and mix thoroughly.

Using a plastic pipette, transfer a few drops of this solution onto a watch glass and add one drop of iodine solution.

1-2. Indicate the result of the iodine test No. 2 on the Answer Sheet by circling **Y** if positive or **N** if negative (2 points).

Mix the solution left after hydrolysis in the volumetric flask thoroughly. Take a 4.00 mL aliquot and transfer it into a clean, dry test tube. Add 4.00 mL of 0.1 M sodium acetate buffer (pH 4.8) and **the provided volume** of **glucoamylase**. Label the tube and incubate it in the **common water bath** at 60°C for 30 min, mixing occasionally with a glass rod. Remove the tube **with heat protective gloves** and place it in the test tube rack.

1-3. Write the overall balanced equation for the hydrolysis of starch using molecular formulas of the substances (1 point).


To detect glucose in the solution and estimate its quantity, you will carry out two experiments, which can be performed in parallel.

Detection of glucose in the starch hydrolysis products. In a clean test tube, combine 5.00 mL of the 7.5% (NH₄)₆Mo₇O₂₄ solution, 2.50 mL of KH₂PO₄ solution, and 5.00 mL of the hydrolysis product. Heat in the boiling water bath for 20 min, then cool in a beaker filled with water (use heat protective gloves!).

1.4 Show the test tube to the lab assistant and get his/her signature on your Answer Sheet (2 points).

Quantitative determination. You have been given an unknown-concentration glucose solution (**Task # 1 Glucose #XXX**). In a clean test tube, combine 5.00 mL of 7.5% (NH₄)₆Mo₇O₂₄, 2.50 mL of KH₂PO₄, and 5.00 mL of the unknown glucose solution. Heat in a boiling water bath for 20 min, then cool in a water bath (use heat protective gloves!). In the figure below, a color scale of glucose standards (mg/mL) for the above test is provided. Estimate the concentration of your unknown sample using this scale.

59 th International Mendeleev Olympiad, 2025		
Experimental Exam	Problems	p. 6

1.5 Tick the estimated concentration of your unknown glucose solution on the Answer Sheet (10 points). Show the test tube and your chosen interval to the lab assistant and get his/her signature.

Task 2. Titrimetric Determination of Glucose Concentration (20 points)

Reagent	Volume/Mass	Container	Label	
	Per participant			
Glucose (solution of unknown concentration)	20 mL	Glass vial with stopper	Task #2 Glucose #XXX,	
Cerium(IV) sulfate (0.01044 M)	150 mL	Dark bottle with cap (250 mL)	Ce(SO ₄) ₂ 0.01044 M	
H ₂ SO ₄ 15%	100 mL	Plastic bottle	H ₂ SO ₄ 15%	
NaOH 2 M	30 mL	Plastic bottle	NaOH 2 M	
Common reagents				
K ₃ [Fe(CN) ₆] 50 g/L (with Na ₂ CO ₃ , 20 g/L)		50 or 100 mL beaker	K ₃ [Fe(CN) ₆]	
Indicator ferroin		50 or 100 mL beaker	Ferroin	

Equipment	Quantity	
Per participant		
50 mL volumetric flask	1	
On the common bench		
50 or 100 mL beaker (for K ₃ [Fe(CN) ₆] /	4	
Ferroin)		
2 mL graduated pipette	2	
5 or 10 mL graduated pipette	2	

Procedure

Fill the burette with the cerium(IV) sulfate solution. In a 50.0 mL volumetric flask, add 5.00 mL of the unknown-concentration glucose solution (**Task #2 Glucose #XXX**) and 5.00 mL of the K₃[Fe(CN)₆] solution (containing Na₂CO₃ to create an alkaline medium); dilute to the mark with distilled water.

59 th International Mendeleev Olympiad, 2025		
Experimental Exam	Problems	p. 7

Take a 10.00 mL aliquot from the volumetric flask and transfer it into a 250 mL Erlenmeyer flask. Add 2 mL of 2 M NaOH. Place the flask on the hot plate, bring to boiling (≈1 min), and boil for 60 s. Remove (**use heat protective gloves**), immediately cool under cold running water to room temperature. To the same flask, add 15 mL of 15 % H₂SO₄ and 20 mL of distilled water. Add 1.00 mL of ferroin indicator (the iron(II) complex with three molecules of 1,10-phenanthroline; see the structure below) and titrate with the cerium(IV) sulfate solution until the color changes from orange-brown to green.

Titration No.	1	2	3	4	5	6
Initial volume, cm ³						
Final volume, cm ³						
Volume consumed for titration, cm ³						
Volume accepted by you as the answer, V _{Ce} : cm ³						

- 2.1 Record the volume of cerium sulfate used (V_{Ce}, mL). (14 points)
- **2.2** Write the ionic equations of the following reactions (use molecular formulas for organic species; 1 point each):
- a) Oxidation of glucose by hexacyanoferrate(III);
- b) Reaction in which cerium(IV) participates during the titration;
- c) Conversion of the indicator into the blue iron(III) complex (denote phenanthroline as phen).
- **2-3.** Calculate (show you work in the Answer Sheet) the concentration of the provided glucose solution, c_{glucose} (mol/L). (3 points)

59th International Mendeleev Olympiad, 2025		
Experimental Exam	Problems	p. 8

Task 3. Hydrolysis of Paracetamol and Determination of Its Content in a Pharmaceutical Preparation (19 points)

Reagent	Volume/Mass	Container	Label	
Per participant				
Paracetamol	Portion of tablet	Conical flask (125 mL)	Paracetamol #XXX	
HC1, 2 M	50 mL	Bottle with cap	HCl 2 M	
KBr	1 g	Eppendorf tube	KBr	
NaNO ₂ , 0.0521 M	100 mL	Glass bottle with lid	NaNO ₂ for titration	
Indicator paper (iodide-starch)	40 pieces	Zip-lock bag	Indicator paper	

Equipment	Quantity
	Per participant
100 mL volumetric flask	1

A sample (portion of tablet) of paracetamol is placed in a 125 mL conical flask. Add 30 mL of distilled water and 30 mL of 2 M HCl to the flask. Wait until the tablet dissolves completely. Place the flask on the hot plate and boil the solution for 1 hour. Avoid vigorous boiling and excessive evaporation; reduce heating if necessary.

After 1 hour, remove the conical flask from the hot plate (use heat protective gloves!). Cool the flask under a stream of cold water to room temperature. Quantitatively transfer the solution into a 100 mL volumetric flask, add 1 g of KBr from the Eppendorf tube (the entire amount provided), and mix thoroughly until fully dissolved. Fill to the mark with distilled water.

Fill the burette with the sodium nitrite solution.

Transfer a 10.00 mL aliquot of the prepared solution from the volumetric flask into a titration flask. Perform a preliminary titration by adding 0.5 mL portions of the NaNO₂ solution. After each addition, mix the solution thoroughly and, after at least 20 seconds, test completeness of the reaction using iodide–starch indicator paper. (On a dry watch glass, place pieces of indicator paper; dip a glass rod into the titrated solution and touch the paper.) Continue titration until a drop of the sample immediately produces a bright-blue coloration on the paper. Then perform the precise titration.

59th International Mendeleev Olympi	ad, 2025						
Experimental Exam			Proble	ems		p. 9	
Titration No.	1	2	3	4	5	6	
Initial volume, cm ³							
Final volume, cm ³							
Volume consumed for titration, cm ³							
Volume accepted by you as the answer, V _{NaNO2} : cm ³							

- **3-1.** Record the volume of sodium nitrite used (V_{NaNO_2} , mL) (14 points).
- **3-2.** Write the equations (1 point each) of:
- a) Hydrolysis of paracetamol in hydrochloric acid;
- b) Reaction in which the hydrolysis product participates during titration;
- c) Reaction behind the action of the indicator.
- **3-3.** Calculate (show your work in the Answer Sheet) the mass of paracetamol in the sample (m, mg) (2 points).

Task 4. Qualitative Analysis of Pharmaceutical Substances (20 points)

Reagent	Volume/ Mass	Container	Label	
	Per participant			
Sodium hydroxide (2 M)	15 mL	Plastic test tube (15 mL) with cap	NaOH	
Hydrochloric acid (1 M)	15 mL	Plastic test tube (15 mL) with cap	HC1	
Alkaline sodium–potassium tartrate solution	15 mL	Plastic test tube (15 mL) with cap	KNaC ₄ H ₄ O ₆	
Copper(II) sulfate (0.5 M)	15 mL	Plastic test tube (15 mL) with cap	CuSO ₄	
Sodium nitrite (0.1 M)	15 mL	Plastic test tube (15 mL) with cap	NaNO ₂	
Iron(III) chloride (0.1 M)	15 mL	Plastic test tube (15 mL) with cap	FeCl ₃	
β-Naphthol, alkaline solution	15 mL	Plastic test tube (15 mL) with cap	β-naphthol	
Sodium salicylate	~ 0.1 g	Eppendorf tube	Drug #1	
Sodium benzoate	~ 0.1 g	Eppendorf tube	Sodium benzoate	
Acetylsalicylic acid	~ 0.1 g	Eppendorf tube	Drug #2	
<i>N</i> -(4-Hydroxyphenyl)acetamide (paracetamol)	~ 0.1 g	Eppendorf tube	Drug #3	

59th International Mendeleev Olympiad, 2025		
Experimental Exam	Problems	p. 10

D-(-)-Threo-1-(p-nitrophenyl)-2-dichloroacetamido-1,3-propanediol (chloramphenicol)	~ 0.1 g	Eppendorf tube	Drug #4
Phthalylsulfathiazole (phthalazol)	~ 0.1 g	Eppendorf tube	Drug #5
p-Aminobenzoic acid	~ 0.1 g	Eppendorf tube	Drug #6 p-aminobenzoic acid
Unknown substances 1 and 2	~ 0.1 g	Eppendorf tube	1, 2
Mixture of unknown substances	~ 0.1 g	Eppendorf tube	3
	Common	reagents	
Zinc metal	Several granules	100 mL beaker	Zn
pH indicator paper			

Equipment	Quantity
Per participant	
12-well reaction plate	1

In the pharmacopeia, each active pharmaceutical ingredient is accompanied by a test for identity—a specific reaction that confirms its presence in a dosage form. Identity testing is crucial for quality control during drug manufacture and storage. Note that pharmaceutical formulations often include not only the active compound but also excipients—such as glucose, starch, or neutral salts—those that have no pharmacological effect. Therefore, in your analysis you must distinguish reactions characteristic of the active ingredient from those involving excipients.

The task is divided into three subparts:

- 1) First, you will perform detection reactions using the known substances.
- 2) Next, using these reactions, you will identify two unknown individual substances.
- 3) Finally, you will conduct a qualitative analysis of a mixture of two unknown substances. Reactions may be carried out in test tubes (with or without heating) or in the 12-well plate (without heating).

Subpart 1 You are provided with a set of reagents listed below. Use them both as reagents and to practice the detection reactions for the unknown substances:

Solutions: sodium hydroxide (2 M); hydrochloric acid (1 M); alkaline sodium–potassium tartrate; copper(II) sulfate (0.1 M); alkaline β -naphthol solution; sodium nitrite (0.1 M); iron(III) chloride (0.1 M).

Solids: zinc metal; sodium benzoate.

Indicator paper.

59 th International Mendeleev Olympiad, 2025		
Experimental Exam	Problems	p. 11

Pharmaceutical standards			
Sodium salicylate (Drug #1)	Acetylsalicylic acid (aspirin; anti- inflammatory) (Drug #2)		
ONa	O OH		
ОН	O CH ₃		
<i>N</i> -(4-Hydroxyphenyl)acetamide (paracetamol; antipyretic) (Drug #3)	D-(-)-Threo-1-(p-nitrophenyl)-2- dichloroacetamido-1,3-propanediol (chloramphenicol; antibacterial) (Drug #4)		
HO CH ₃	OH OH CI HN CI O		
Phthalylsulfathiazole (phthalazol; intestinal antibacterial) (Drug #5)	p-Aminobenzoic acid (Drug #6)		
O O S N N N N N N N N N N N N N N N N N			

Note. Remember that some of the provided substances contain excipients in addition to the active compound.

Subpart 2 You are given two **unknown** substances (Eppendorf tubes 1 and 2) chosen from the following list of **ten compounds**. Identify each substance and support your choice.

1. Na ₂ CO ₃	5. Sodium benzoate
2. Glucose	6. Paracetamol
3. Ascorbic acid	7. Acetylsalicylic acid
HO O O	8. Chloramphenicol
но он	9. Phthalazol
4. Sodium salicylate	10. <i>p</i> -Aminobenzoic acid

59 th International Mendeleev Olympiad, 2025		
Experimental Exam	Problems	p. 12

Comments and recommendations for the detection reactions:

- Hydrolysis of a pharmaceutical can be performed by heating its acidified solution in a boiling water bath for 5 min.
- Phthalazol can be hydrolyzed in acidic medium upon heating to yield 2-(*p*-aminobenzene-sulfamido)thiazole.
- Amines may be diazotized by mixing with nitrite in acidic medium (solution must not be hot), then coupled in alkaline medium by adding β -naphthol; compare the color to a control without the analyte.
- Nitro groups can be reduced with zinc metal in acidic medium upon heating for 10 min.
- Copper(II) is reduced by sugars upon heating in alkaline medium (e.g., with tartrate solution).
- Phenols form colored complexes with iron(III) salts.
- Some solutions turn yellow and then darken upon heating with alkali for several minutes.
- **4-1.** Circle the number of the structure of the substance in test tube 1. (5 points).
- **4-2.** Circle the number of the structure of the substance in test tube 2 (5 points).

Subpart 3 You are given a preparation that is a mixture of **two** compounds from the ten "unknown substances" (Eppendorf #3). Identify both components.

The possible components are:

Component 1: Na₂CO₃; ascorbic acid; *p*-aminobenzoic acid; acetylsalicylic acid; paracetamol.

Component 2: glucose; sodium benzoate; sodium salicylate; phthalazol; chloramphenicol.

4-3. Mark the numbers of the two structures contained in mixture 3. (10 points).

59 th International Mendeleev Olympiad, 2025		
Experimental Exam	Problems	p. 13

Table for recording detection reactions results (not graded or evaluated)

No.	Substance	Reagent					
1	Na ₂ CO ₃						
2	Glucose						
3	Ascorbic acid						
4	Sodium salicylate						
5	Sodium benzoate						
6	Paracetamol						
7	Acetylsalicylic acid						
8	Chloramphenicol						
9	Phthalazol						
10	p-Aminobenzoic acid						